Ahmet Celik

  • Postal address:
    Institute for Chemical Technology and Polymer Chemistry
    Engesserstr. 20
    Campus South Bldg. 11.21
    76131 Karlsruhe
    Germany

Current Ph.D. Research

Carbon capture and climate-friendly hydrogen production via high-temperature processes.

 

Work History

08/2024 – 10/2024 Massachusetts Institute of Technology (MIT)
Visiting Scientist
Since 01/2022 KIT, Institute of Chemical Technology and Polymer Chemistry
Ph.D. Candidate
04/2020 – 04/2021 KIT, Institute of Chemical Technology and Polymer Chemistry
Student Assistant
01/2020 – 04/2020 BASF SE, Antwerp, Belgium
Internship
04/2019 – 08/2019 KIT, Institute of Thermal Process Engineering
Student Assistant
09/2018 – 08/2019 Daimler Truck AG, Wörth am Rhein
Working Student
09/2017 – 10/2017 BASF SE, Ludwigshafen am Rhein
Internship

 

 

Education

04/2020 – 11/2021 M.Sc. in Chemical and Process Engineering, KIT
Thesis: Methane as feedstock for high-value chemicals
Institute of Chemical Technology and Polymer Chemistry
 
09/2019 – 12/2019 Korea Advanced Institute of Science and Technology
Studies abroad (M.Sc. program) supported by a DAAD scholarship
10/2016 – 04/2020 B.Sc. in Chemical and Process Engineering, KIT
Thesis: Investigation of the reaction and dissociation behavior of copper-based multi-component systems in the context of catalyst synthesis
Institute of Thermal Process Engineering

 

Honors

08/2024 – 10/2024 Research Travel Grant
Karlsruhe House of Young Scientists (KHYS)
06/2024 Young Talent Award
Gesellschaft für Chemische Technik und Biotechnologie e.V. (DECHEMA)
09/2019 – 12/2019 PROMOS scholarship
German Academic Exchange Service (DAAD)

 

Publications: Journal articles

[1]    A techno-economic assessment of pyrolysis processes for carbon capture, hydrogen and syngas production from variable methane sources: Comparison with steam reforming, water electrolysis, and coal gasification
A. Çelik, I. Ben Othman, Y. Neudeck, O. Deutschmann, P. Lott, Energy Convers. Manage. (2025)
https://doi.org/10.1016/j.enconman.2024.119414.
[2]    Investigating the formation of soot in CH4 pyrolysis reactor: A numerical, experimental, and characterization study
A. B. Shirsath, M. Mokashi, R. Pashminehazar, A. Çelik, P. Lott, S. Tischer, J.-D. Grunwaldt,
O. Deutschmann, Carbon (2025)
https://doi.org/10.1016/j.carbon.2024.119689.
[3]     On the role of hydrogen inhibition in gas-phase methane pyrolysis for carbon capture and hydrogen production in a tubular flow reactor
A. Çelik, A.B. Shirsath, F. Syla, H. Müller, P. Lott, O. Deutschmann, J. Anal. Appl. Pyrolysis (2024)
https://doi.org/10.1016/j.jaap.2024.106628.
[4]     Methane pyrolysis in packed bed reactors: kinetic modeling, numerical simulations, and experimental insights
M. Mokashi, A.B. Shirsath, A. Çelik, P. Lott, H. Müller, S. Tischer, L. Maier, J. Bode, D. Schlereth, F. Scheiff, D. Flick, M. Bender, K. Ehrhardt, O. Deutschmann, Chem. Eng. J. (2024)
https://doi.org/10.1016/j.cej.2024.149684.
[5]     Pyrolysis of biogas for carbon capture and carbon dioxide-free production of hydrogen
A. Çelik, I. Ben Othman, H. Müller, P. Lott, O. Deutschmann, React. Chem. Eng. (2024)
https://doi.org/10.1039/d3re00360d.
[6]    CO2-free production of hydrogen via pyrolysis of natural gas: influence of non-methane hydrocarbons on product composition, methane conversion, hydrogen yield, and carbon capture
A. Çelik, I. Ben Othman, H. Müller, O. Deutschmann, P. Lott, Discover Chem. Eng. (2024)
https://doi.org/10.1007/s43938-024-00067-4.
[7]     Kinetics of thermal dry reforming of methane for syngas production and solid carbon capture
M. Mokashi, A.B. Shirsath, S. Demir, A. Çelik, P. Lott, S. Tischer, O. Deutschmann, React. Chem. Eng. (2024)
https://doi.org/10.1039/d4re00312h.
[8]    Influence of Dopants on Pt/Al2O3-Based Monolithic Catalysts for Autothermal Oxidative Coupling of Methane
S. Schardt, S. Bastian, A. Çelik, J. Chawla, P. Lott, Catalysts (2024)
https://doi.org/10.3390/catal14110785.